Fuzzy exponentially weighted moving average control chart for univariate data with a real case application

نویسندگان

  • Sevil Sentürk
  • Nihal Erginel
  • Ihsan Kaya
  • Cengiz Kahraman
چکیده

Statistical process control (SPC) is an approach to evaluate processes whether they are in statistical control or not. For this aim, control charts are generally used. Since sample data may include uncertainties coming from measurement systems and environmental conditions, fuzzy numbers and/or linguistic variables can be used to capture these uncertainties. In this paper, one of the most popular control charts, exponentially weighted moving average control chart (EWMA) for univariate data are developed under fuzzy environment. The fuzzy EWMA control charts (FEWMA) can be used for detecting small shifts in the data represented by fuzzy numbers. FEWMA decreases number of false decisions by providing flexibility on the control limits. The production process of plastic buttons is monitored with FEWMA in Turkey as a real application. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Economic-Statistical Design of VSSI-MEWMA-DWL Control Chart with Multiple Assignable Causes

This paper proposes a multi-objective model for the economic-statistical design of the variable sample size and sampling interval multivariate exponentially weighted moving average control chart by using double warning lines. The Markov chain approach is used to obtain the statistical properties. We extend the Lorenzen and Vance cost function considering multiple assignable causes and multivari...

متن کامل

An EWMA p Chart Based On Improved Square Root Transformation

Generally, the traditional Shewhart p chart has been developed by for charting the binomial data. This chart has been developed using the normal approximation with condition as low defect level and the small to moderate sample size. In real applications, however, are away from these assumptions due to skewness in the exact distribution. In this paper, a modified Exponentially Weighted Moving Av...

متن کامل

The Average Run Length Performance of a Multivariate Exponentially Weighted Moving Average Control Chart Procedure with Application

One of the most powerful tools in quality control is the statistical control chart. First developed in the 1920's by Walter Shewhart, the control chart found widespread use during World War II and has been employed, with various modifications ever since. The drawbacks to multivariate charting schemes is their inability to identify which variable was the source of the signal. The multivariate ex...

متن کامل

A new exponentially weighted moving average control chart for monitoring the coefficient of variation

Monitoring coefficient of variation is one of the successful approaches to Statistical Process Control (SPC) when the process mean and standard deviation are not constants. This paper presents a modified Exponentially Weighted Moving Average (EWMA) chart in order to further enhance the sensitivity of the EWMA control chart proposed by Castagliola et al. (2011). Tables are provided for the stati...

متن کامل

The Performance of the Adaptive Exponentially Weighted Moving Average Control Chart with Estimated Parameters

The Adaptive Exponentially Weighted Moving Average (AEWMA) control chart has the advantage of detecting in balance mixed range of mean shifts. Its performance has been studied under the assumption that the process parameters are known. Under this assumption, previous studies have shown that AEWMA provides superior statistical performance when compared to other different types of control charts....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014